Antarctic Krill: Past and future

To consider how scientific understanding of the South Georgia Maritime Zone has developed since 2013.

To provide any initial evidence-based assessment of the effectiveness of current management measures and advice on the degree to which evidence might support any revisions to management measures.

Anup Athwal1, Simon L. Hill2, Evgeny A. Pukkari1,4, Volker Siegel3, Ricardo Audeville8, Sanae Chiuta4, Kendra L. Daly5, Rod Downie6, Sophie Fielding7, Peter Freiberg, Laura Gerrish1, Graham W. Rose2, Mark J. Jones5, So Kawaguchi1, Bjorn A. Krafft1, Valero Leith3, Jun Nishikawa6, Helen J. Peel2, Christian S. Reiss3, Robin M. Ross7, Langdon R. Queijn4, Katrin Schmidt2, Deborah K. Steinberg2, Roshan C. Subramaniam1, Geraint A. Turley7, and Peter Ward2.
Sardine cycles, krill declines, and locust plagues: revisiting ‘wasp-waist’ food webs

Angus Atkinson¹, Simeon L. Hill², Manuel Barange¹, Evgeny A. Pakhomov², David Raubenheimer³, Katrin Schmidt², Stephen J. Simpson⁴, and Christian Reiss⁵

¹Platoys Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL10 9DN, UK
²British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
³Department of Earth and Ocean Sciences, University of British Columbia, 4538 Stump Road, Vancouver, BC, V6T 1Z4, Canada
⁴School of Biological Sciences and the Charles Perkins Centre, The University of Sydney, Hydon-Lawrence Building, ASB, NSW 2006, Australia
⁵Faculty for Veterinary Science, The University of Sydney, J.C. Stewert Building, NSW 2006, Australia

Key:
- Red: Antarctic krill
- Green: Desert locust
- Black: Key copepod species
- Blue: Japanese sardine

Log₁₀ (abundance)

Year

TRENDS in Ecology & Evolution
Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary?

S. L. Hill
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
Email – slh@bams.ac.uk

A. Atkinson
Plymouth Marine Laboratory
Prospect Place, Plymouth
Devon PL1 3OE
United Kingdom

C. Darby
CIFAS
Parkfield Road, Lowestoft
Suffolk NR33 0HT
United Kingdom

S. Fielding
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom

B. A. Kraob, O. R. Goda and G. Skrette
Institute of Marine Research
Nordnes Gate 50, 5005 Bergen
Norway

P. N. Thoms and J. L. Watkins
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom

Conservative biomass estimate
Subarea catch limit

1000,000 tonnes

Catch

48.3

1000,000 tonnes
Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

Simeon L. Hill¹, Tony Phillips¹, Angus Atkinson²

¹ British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, ² Plymouth Marine Laboratory, Plymouth, United Kingdom

![Graph showing SST anomaly (°C) over time from 2000 to 2100.](image)

![Maps showing CMIP5 experiment RCP26 mean Jan-Mar SST difference between 2070-2099 and 1991-2020.](image)

![Maps showing CMIP5 experiment RCP85 mean Jan-Mar SST difference between 2070-2099 and 1991-2020.](image)
Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

Simeon L. Hill¹, Tony Phillips¹, Angus Atkinson²

¹British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, ²Plymouth Marine Laboratory, Plymouth, United Kingdom

![Graph showing SST anomaly (°C) from 2000 to 2100 for RCP2.6, RCP4.5, and RCP8.5]

![Maps showing observed chlorophyll at 50%, 50% reduction, and 50% increase for each RCP scenario]

[Images of Antarctic regions with color gradients indicating SST anomaly and chlorophyll change]
Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

Simeon L. Hill¹, Tony Phillips¹, Angus Atkinson²

¹British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, ²Plymouth Marine Laboratory, Plymouth, United Kingdom
Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

Simeon L. Hill¹, Tony Phillips¹, Angus Atkinson²

¹British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom. ²Plymouth Marine Laboratory, Plymouth, United Kingdom
Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea

Emily S. Klein, Simeon L. Hill, Jefferson T. Hinke, Tony Phillips, George M. Watters

1 Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America.
2 Palomar Institute, Fallbrook, California, United States of America.
3 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea

Krill

Penguins

Seals

Proportion of biomass (A) and abundance (B, C) in reference scenario

Small-scale management unit (SSMU)

Antarctic Peninsula S. Scotia Sea N. Scotia Sea

% initial individual krill weight

RCP 2.0 RCP 8.5
Can reducing **regional catch limits** help to alleviate the effects of climate change?
The paper examines the combined risks of climate change and fishing at the catch limit, at the regional scale (subareas 48.1 to 48.3).

It does not evaluate any specific proposals about the management of the SGSSI MPA.

But the model could be adapted to evaluate such proposals.

This would need:

Inclusion of the SSI (48.4),
Alignment of seasons,
(model winter = April-Sept, krill fishery open April-Oct).
Realistic representation of current catches.

<table>
<thead>
<tr>
<th>SSMU</th>
<th>Summer (t)</th>
<th>Winter (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>SGW</td>
<td>572</td>
</tr>
<tr>
<td>15</td>
<td>SGE</td>
<td>2,005</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To consider how scientific understanding of the South Georgia Maritime Zone has developed since 2013.

Increased understanding of vulnerability to climate change: SG in particular is in an area of significant projected warming, which is likely to stress cold water organisms such as krill and, consequently, their predators.

Past dynamics show that significant changes can occur on decadal timescales.

To provide any initial evidence-based assessment of the effectiveness of current management measures and advice on the degree to which evidence might support any revisions to management measures.

Krill catch limits and realised catches remain low relative to conservative estimates of krill stock size.

Reducing krill catch limits at the regional scale will not offset the potential effects of climate change (RCP 8.5). Targeted measures to protect vulnerable populations might help. Evaluation of proposed measures is feasible.